Мощнейший в мире рентгеновский лазер превратил атом в "черную дыру"
Рентгеновский лазер LCLS позволил физикам "катапультировать" почти все электроны одного атома в молекуле и временно превратить его в миниатюрный аналог черной дыры, притягивающей к себе электроны с силой ее космического собрата.
"Сила, с которой электроны притягивались к атому йода в данном случае, была гораздо большей, чем та, которую бы вырабатывала, к примеру, черная дыра с массой в десять Солнц. В принципе, гравитационное поле любой черной дыры звездной массы не способно сопоставимым образом действовать на электрон, даже если его вплотную приблизить к горизонту событий", — рассказывает Робин Сантра (Robin Santra) из Немецкого синхротронного центра DESY.
Сантра и его коллеги создали подобную миниатюрную "черную дыру", сфокусировав весь луч рентгеновского лазера LCLS, пока самой мощной установки подобного рода в мире, на точке шириной всего в 100 нанометров. Это примерно равно длине крупной органической молекулы и в несколько сотен раз меньше ширины пучка, обычно применяющегося в опытах с подобными излучателями.
Благодаря этому мощность лазерного пучка достигла десяти миллиардов гигаватт на квадратный сантиметр, вплотную подобравшись к отметке, где начинают проявляться ультрарелятивистские эффекты и свет начинает спонтанно превращаться в материю и антиматерию.
Столкновение такого импульса с одиночными атомами ксенона и йода, как показали первые опыты физиков, приводит к тому, что они теряют фактически все свои электроны и приобретают фантастически высокую степень окисления — +48 или +47, в результате чего возникает рекордно высокий положительный заряд.
Ученые решили проверить, как этот заряд может повлиять на поведение других молекул и атомов, соединив йод с молекулами метана и этана, "прозрачными" для рентгена и не реагирующими на облучение подобными лучами.
Результаты этих опытов оказались фантастическими – облучение таких молекул лазером всего на протяжении 30 наносекунд привело к тому, что атомы йода превратились в своеобразные электрические "черные дыры" на мгновения после того, как их "прошил" рентгеновский пучок.
Эти атомы, вопреки ожиданиям ученых, потеряли гораздо больше электронов – не 46 или 47, а 53 или 54 частицы. На этом процесс не остановился, и атомы йода, подобно сверхмассивным черным дырам, начали перетягивать на себя электроны из других частей молекулы, разгонять и "выплевывать" их в виде пучков, похожих на выбросы их космических "кузенов".
В результате этого вся молекула йодметана фактически мгновенно дезинтегрировала себя, прожив всего триллионную долю секунды после начала обстрела лазером. Нечто подобное, как полагают ученые, может происходить при контакте живых организмов с рентгеновским излучением, и изучение этого процесса поможет нам понять, как можно снизить или нейтрализовать вред от радиации.